#### NEXT GENERATION - RADIO ASTRONOMY PROJECT -

#### VERY LARGE MILLIMETER/ SUBMILLIMETER ARRAY (VLMSA)

#### Satoru Iguchi and Masao Saito National Astronomical Observatory of Japan Munetake Momose Ibaraki University

#### Introduction

#### ALMA (Atacama Large Millimeter/ submillimeter array)

High sensitivity (μJy) and resolution (0".01)

| Antennas   | 12m x 50    | 12m x 4 + 7m x 12     |
|------------|-------------|-----------------------|
| Resolution | 0".01 - 10" |                       |
| Frequency  | 31-950 GH   | Z                     |
| Correlator | 4 kHz       | 0.012 km/s at 100 GHz |
| Bandwidth  | 16 GHz      |                       |

Early Universe, Protoplanetary disks, and New Molecules Even direct detection of nearby giant planets!

#### ALMA

Under construction in northern Chile (5000m elevation)



### WHAT'S NEXT?

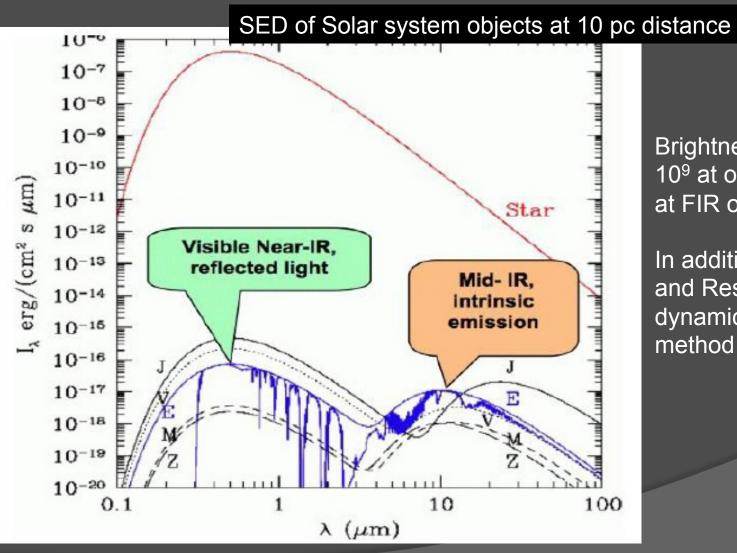
What telescope is desired in 2030?

Big leap between now and 2030 in science and technology.

### Kick-off Meeting for Nextgeneration Radio astronomy

- On March 4, 2009, a private working group (WG) for the next-generation radio astronomy was launched at NAOJ.
  - The WG members included: Eiichiro Kokubo (NAOJ/theoretical); Kotaro Kohno (Univ. of Tokyo); Masao Saito (NAOJ, radio); Munetake Momose (Ibaraki Univ.); Naoki Yoshida (Univ. of Tokyo, IPMU); Satoru Iguchi (NAOJ, radio); Seiji Kameno (Kagoshima Univ.); Shogo Tachibana (Tokyo Univ., Frontier); Yasuhiro Murata (JAXA); Yuri Aikawa (Kobe Univ.); Yutaro Sekimoto (NAOJ, Advanced Technology Center). Wishing to achieve big scientific goal and give people a dream, the members discussed the concept and technical requirements of the next-generation telescope so that it could cover a wide range of research themes such as the origin of life, planets, and the universe.

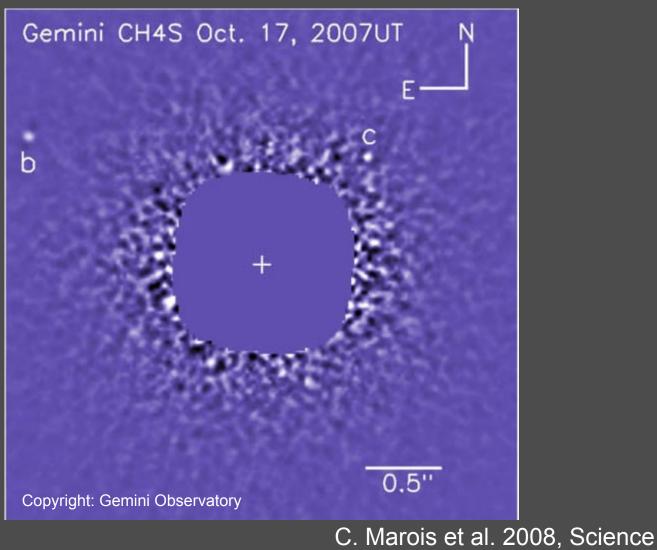
### Astronomy in 2030


- Beginning of Universe
- Dark matter/energy
- Galaxy formation
- Black holes
- Star/Planet formation

- Telescope
- Oetector
- Transmission
- Control
- Analysis software
- Virtual observatory

Life

# Direct Detection and imaging of 2<sup>nd</sup> Earth is a way to go!


#### **Direct Detection of Exoplanets**



Brightness contrast of 10<sup>9</sup> at optical and 10<sup>6</sup> at FIR or Radio regime

In addition to Sensitivity and Resolution, High dynamic range imaging method is necessary.

#### **Direct detection of Jovian Planets**



#### 2nd Earth

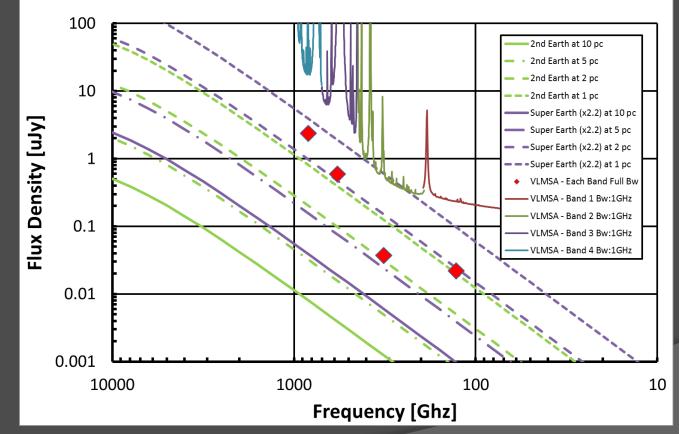
- Detection and Imaging of Earth-like Planets (2nd Earth)
  - Main goal of next generation project

 We have to find planets where we can migrate. Not Habitable planets, we need *"Migratable*" planets in the far future.

#### **Past Initial Studies**

- With this research, we aim not only to achieve mere scientific results but also change the paradigm in the way people see the world.
  - 2012.07.02 SPIE in Amsterdam
  - 2011.12.16 Japan Radio Astronomy Forum Symposium at the University of Tokyo
  - 2011.11.26-27 4th Astrobiology Workshop at Kobe University
  - 2010.09.26 AP-RASC 2010 in Toyama
  - 2009.09.25 Japan Radio Astronomy Forum Symposium at the University of Tokyo
  - 2009.07.04 Past Quarter Century of Nobeyama Radio Observatory and Future of Radio Astronomy at the NAOJ Mitaka campus
  - 2009.03.04 Kick-off Meeting for Next-generation submillimeter astronomy

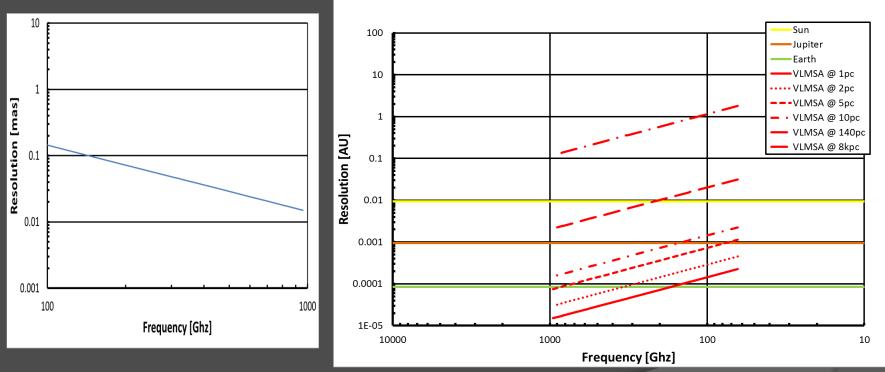
#### **Feasible Studies**


Confusion limit v.s. Minimum detectable temperature due to the angular resolution and sensitivity

#### Major Specification of VLMSA

50m x 64 Antennas Surface 25 µm up to 3000 km Max Baseline 64 GHz to 960 GHz RF and IF Freq Band 1: 64-192 GHz Band 2: 192-448 GHz Band 3: 448-704 GHz Band 4: 704-960 GHz Receiver Temp  $\frac{1}{2}$  x ALMA and Dual

### Detailed Analysis of VLMSA


Reflected the ALMA-site atmospheric performance (1GHz step resolution) to sensitivities of VLMSA.



Direct Detection of 2<sup>nd</sup> Earth at 2 pc and Super Earth at 4 pc within 24 hr observations

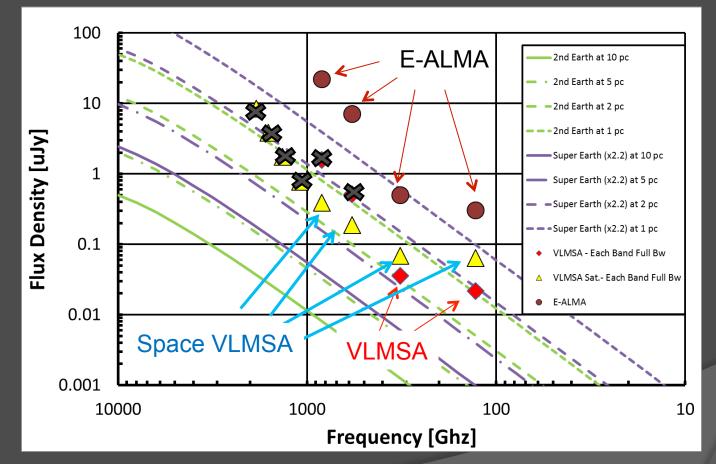
### **Detailed Analysis of VLMSA**

 Reflected the ALMA-site atmospheric performance (1GHz step resolution) to resolution of VLMSA at maximum baseline of 3000 km.



#### More Feasible Studies

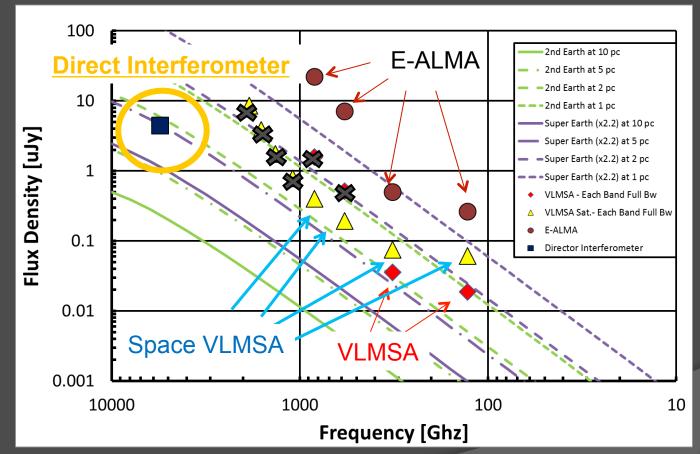
- Comparison (in heterodyne)
  - Enhanced ALMA:
    - New 4 bands; 66 -> 80 Ant, BW 16GHz -> 256 GHz, Half Trx, Baseline <u>300</u> km
  - Ground VLMSA:
    - New 4 bands; 50 m(25μm) x 64 antennas, BW 256 GHz, Half Trx, Dual Pol., Baseline <u>3000</u> km
  - Space VLMSA:
    - Up to 2 THz; 25 m(16µm) x 64 antennas, BW 256 GHz, Half Trx, Dual Pol., Baseline <u>3000</u> km, LO stability of 10 times better
  - Space Direct Interferometer
    - 1-10 TH; 3.5 m x 5 satellite


#### More Feasible Studies

- Comparison between Ground and Space
  - Space VLMSA:
    - 25 m(16µm) x 64 antennas, BW 256 GHz, Half Trx, Dual Pol., Baseline 3000 km, LO stability 10 times better

| _ | RF and IF Freq | 64 GHz to 960 GHz | SSB Trx |
|---|----------------|-------------------|---------|
|   | Band 1:        | 64-192 GHz        | hv=2.5  |
|   | Band 2:        | 192-448 GHz       | hv=2.5  |
|   | Band 3:        | 448-704 GHz       | hv=4.0  |
|   | Band 4:        | 704-960 GHz       | hv=5.0  |
|   | Band 5:        | 960-1216 GHz      | hv=6.0  |
|   | Band 6:        | 1216-1472 GHz     | hv=8.0  |
|   | Band 7:        | 1472-1728 GHz     | hv=10.0 |
|   | Band 8:        | 1728-1984 GHz     | hv=12.0 |
|   |                |                   |         |

#### More detailed Analysis of VLMSA


• Comparison between Ground and Space



Note: Cross mark means that minimum detectable temperature is higher than 300k!

#### More detailed Analysis of VLMSA

• Comparison between Ground and Space



Note: Cross mark means that minimum detectable temperature is higher than 300k!

#### Possibilities for Direct Detection of 2<sup>nd</sup> Earth

- What is reasonable??
  - Enhanced ALMA:
    - Yes Super Earth within 1 pc; Technical feasibility : yes;
    - Cost : 20 x 14 ants + 5 x 80 + 100 = <u>780</u> MUSD
  - Ground VLMSA
    - Yes 2<sup>nd</sup> Earth within 2 pc and Super Earth (*D*x2.2) within 5 pc; Technical feasibility: maybe Yes;
    - Cost: 100 x 64 ants + 1000 = 7,400 MUSD
  - Space VLMSA
    - Yes 2<sup>nd</sup> Earth within 2 pc and Super Earth (*D*x2.2) within 5 pc; *Technical feasibility: no;*
    - Cost : 500 x 64 ants + 1000 = 33,000 MUSD
  - Direct Interferometer
    - Yes!; But, baseline up to 900 km; Technical feasibility: no;
      - Cost: 1500 x 5 sat. + 1000 = 8,500 MUSD

### Science Goal of ground VLMSA

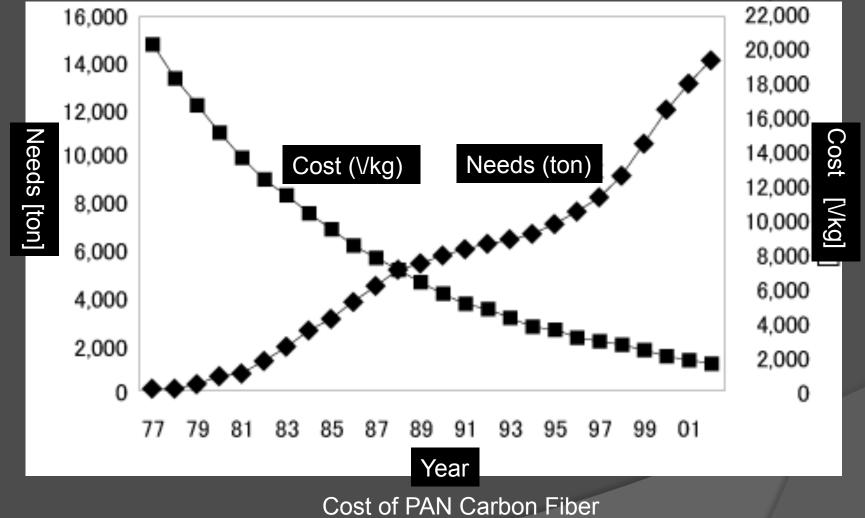
- Direct Detection of 2nd Earth at up to <u>2 pc</u> and Super Earth (*D*x2.2) at up to <u>5 pc</u> within 24 hr observations
- Direct Imaging of 2<sup>nd</sup> Earth and Super Earth at <u>up to 2 pc</u>
- Clear Image of a black hole with an accretion disk in the active central region of Sagittarius A and M87
- Astrometry of stars like the Sun at a distance within 1 kpc

#### Technology Development

#### Antenna

- Large steerable antennas with high pointing accuracy and high surface performance.
- Receiver
  - Noise level down to extreme.
- Backend
  - Wideband with good phase stability
- Correlator
  - High capability of handling large amount of data

#### **Innovative Developments**


#### Receiver technology

- Transistor: 1956 Nobel Prize W.B. Shockley Jr
- Integrated Circuit: 2000 Nobel Prize J. C. Kilby
- Superconductive Transistor and Itegrated Circuit!!!
- Interferometry
  - Aperture Synthesis: 1974 Nobel Prize M. Ryle
  - Ion Laser: 2012 Nobel Prize D. H. Wineland
  - ???

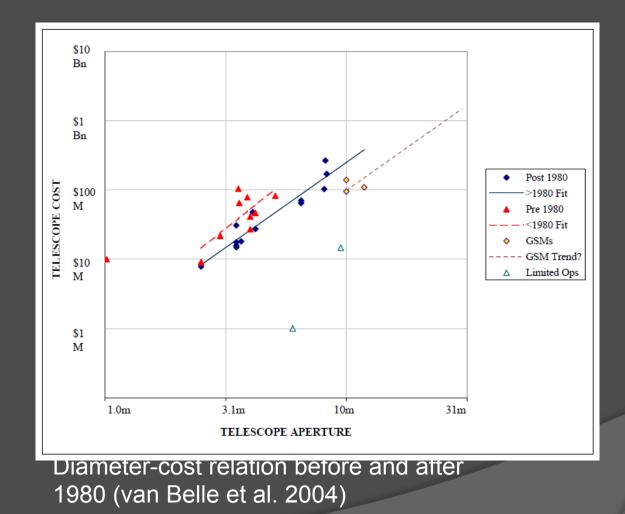
#### Cost Issues

- Construction cost
  - Innovative way to construct antennas
  - Optical telescopes have been trough a big cost reduction with multi-segment mirror technology.
  - Material revolution
  - <u>Superconductive Transistor</u>
- Operation cost
  - Simple cryogenic system
  - HEMT amplifier technology
  - Reliability and Easy Maintenance

#### CFRP cost



## Our Challenge Continues


### Summary

 We propose a next generation array, "Very Large Millimeter/Submillimeter Array"

#### Scientific Goals

- Direct Detection of 2nd Earth at up to 2 pc and Super Earth at up to 4 pc within 24 hr observations
- Direct Imaging of 2nd Earth and Super Earth up to 2 pc
- Clear imaging of a black hole
- High precision of astrometry
- Specification
  - 50m x 64 antennas, 256-GHz bandwidth, Dual Pol.
    <u>Technically challenging, but it's worth!</u>

#### **Cost of Optical Telescopes**

