円盤散乱光分光による(水)氷研究

本田充彦 (久留米大), Collaborators : 村川幸史(大阪産業大) 寺田宏, 工藤智幸, 服部尭(NAOJ), 橋本淳(ABC), 田村元秀 (東大,ABC), 渡辺誠 (岡山理科大学)

contents

- 1. 円盤散乱光分光による(水)氷観測例
 - HD142527の観測結果紹介
- 2. 今後の方針(来年度および長期計画)
 - 1. Subaru/IRCS-POL を用いた研究
 - 3µm feature を用いた円盤表層でのH₂O氷の安定性 (UVによる表層氷のdepletion検証)
 - 2. JWSTによる円盤散乱光分光観測
 - H₂O氷だけでなく、CO,CO₂ 氷も狙う
 - 氷分布による CO, CO₂ snow line 検出
 - 3. 観測計画立案・解釈のためのシミュレーション (村川さん)

通常のL分光結果 中心光は少し青い (輝線は標準星のH吸収 (諸度スペクトルついでに取得) による偽物+telluric)

L分光結果

(上)中心光 (中) 散乱光 0.676"~0.884" (下) 散乱光/中 心光の比 近似的に1回散乱 アルベドのプロ ファイル ~87±2%の凹み

Muto et al. 2015, Soon et al. 2017のHD142527 disk model をベースにdust model だけ少し 変えて(Pollack et al. 1994)観測データに model fitting Ice/Silicate = 2.1 (Pollack et al. 1994)からの氷量スケーリング因子_{Sice}および ダスト 最大サイズa_{max}のみを振ってフィッティング (Special Thanks to 村川さん)

 $a_{max} = 3 \mu m$ で固定、 ς_{ice} を変化させた。

氷量スケーリング因子ç_{ice} = 0.3~1 (つまり Ice/Silicate = 2.1*0.3=0.63 ~ 2.1), ダスト最大サイズa_{max}=3~10µmあたりがよさそう → サイズは先行研究と consistent、氷の量も特に deplete していなさそうだ → HD142527 は氷が受かっているので consistent

UVによる表層氷のdepletion検証 今後の展望1

2-4µm "spectra" of HD100546 disk scattered light

NE

SE

HD100546 disk by Gemini/NICI (Honda et al. 2016)

Gemini/NICI にfilterをinstallして再開!

NW

SW

浅い 3.1µm 水氷吸収を ~40AU の近傍まで検出

予想よりも浅い 3.1μm 吸収は 中心星(B9V)からのUVによる 水氷の光脱離により表層で氷 が減少している?

e.g. Oka et al. 2012

UVによる光脱離効果?

Honda et al. 2016

予想よりも浅い 3.1µm 吸収は
中心星(B9V)からのUVによる
水氷の光脱離により表層で氷
が減少している?
e.g. Oka et al. 2012
他の Herbig Ae/Be や T Tauri
を観測し、傾向を確認
Surface chemistry の影響は?
ALMA で何らかの証拠見えている?

JWSTによる円盤散乱光分光 今後の展望2

JWSTは有望

● 熱赤外域(2.5µm~)は地上からは 感度厳しい

- •「高い背景放射(空・望遠鏡・装置)」
- 「地球大気のH₂O, CO, CO₂の吸収」
- AB Aur, HD163296, etc... ですら3µm帯分光厳しい
- スペース(JWST)の圧倒的な高感度
 - 2-3桁の感度改善(JHK並みに円盤散乱光受かる)
 - H₂Oだけでなく, CO (4.27µm), CO₂(4.67µm) 可能
- JWST 打ち上げ 2021 Mar 以降に延期
 - GO-1 〆切も 2020 Feb 以降に…
 - まだ観測提案に間に合います!

 CO, CO₂ snow line by JWST?
○ CO (4.27µm), CO₂ (4.67µm) はJWSTでは 大気に邪魔されず観測可能 (波長幅も細め)

H₂O snow line は中心星に近く空間分解厳しいが、CO、CO2は遠いため空間分解しやすい
JWSTが有望?
IFU、コロナグラフ有

CO, CO₂ snow line by JWST ?

- 解像度@4.27μm ~0.1"
- H₂O snow lineは絶望的
- CO₂ snow line
 - r ~15AU (for HL Tau) (Okuzumi et al. 2016)
 →0.11"@140AU...
 - r~50AU (for HL Tau) (Zhang et al. 2015) →0.36"@140AU 可能!
- CO snow line
 - r>63AU→0.45" 可能! 赤道面と表面で違うかもしれませんが...

観測計画立案・解釈のための シミュレーション(村川さん) **今後の展望3**

観測計画立案・解釈のための シミュレーション(村川さん)

- 言うまでもないことですが、観測計画立案や、 その後の解釈に円盤モデルシミュレーション 計算が必要!
- 円盤散乱光分光のシミュレーションはあまり なされていない → 村川さんに依頼中
- Subaru/IRCS-POLの偏光分光観測 や JWST による観測を見据えて、 典型的なモデル円盤でのシミュレーション 結果を論文にまとめたい

contents

- 1. 円盤散乱光分光による(水)氷観測例
 - HD142527の観測結果紹介
- 2. 今後の方針(来年度および長期計画)
 - 1. Subaru/IRCS-POL を用いた研究
 - 3µm feature を用いた円盤表層でのH₂O氷の安定性 (UVによる表層氷のdepletion検証)
 - 2. JWSTによる円盤散乱光分光観測
 - H₂O氷だけでなく、CO,CO₂ 氷も狙う
 - 氷分布による CO, CO₂ snow line 検出
 - 3. 観測計画立案・解釈のためのシミュレーション (村川さん)