NAOJ研究集会「将来装置による地球型系外惑星直接検出および撮像」 国立天文台, 2013年1月25日

Observability of Fine-Structures in Protoplanetary Disks

Takayuki Muto (Kogakuin University)

Protoplanetary Disk

- A protoplanetary disk is a birthplace of planets
- Mixture of gas and dust
- Planet formation via coagulation of dust
- Gas dispersal
- Disk lifetime ~10⁶⁻⁷ yr
 - Constraint on the formation timescale of gas giants

Disk-Planet Interaction

- (A) planet(s) embedded in a disk perturbs the disk through gravitational interaction
 - Planets excite spiral density wave, gap, and possibly turbulence

A low-mass planet: spiral waves

A high-mass planet: spiral waves and a gap

Why Disk-Planet Interaction?

- Direct evidence of planet formation within a disk if we can detect BOTH the spiral and the planet
- Theory of spiral waves is relatively well-understood
 - Possible to construct a simple model (under many assumptions!)
- Planet Migration timescale is (generally) faster than the disk lifetime
 - A planet may fall into the central star?
 - A planet may go to outer radii?
 - Migration direction depends on the details of disk structure
 - We basically do not know how planets behave in a disk
- Need observational evidences
 - Physical parameters of protoplanetary disks
 - Any disk that harbors (a) planet(s) at any age?

Spiral Density Wave

- Density wave
 - Is a sound wave in a differentially rotating disk
 - Looks stationary if we are in a corotating frame, which *rigidly* rotates at the rotation frequency of the corotation radius
 - Is excited by any perturbation in a disk: turbulence, a planet...

Density Wave: Dispersion Relation

$$f(r,\phi) = f_0 \exp\left[ik_r r + im\phi\right]$$

$$m^2(\Omega(r) - \Omega_p)^2 = \kappa^2 + c^2 k_r^2$$

 Ω_p : pattern speed

equals the Kepler frequency at the corotation radius

The dispersion relation gives the shape of the spiral density wave

What determines the shape of the density wave?

At a place away from the corotation:

Inner disk:
$$r \ll r_{\rm c} \rightarrow \Omega(r) \gg \Omega_{\rm p}$$

 $f(r,\phi) \propto \exp\left[im\left(\phi \pm r\Omega(r)/c(r)\right)\right]$
Outer disk: $r \gg r_{\rm c} \rightarrow \Omega(r) \ll \Omega_{\rm p}$
 $f(r,\phi) \propto \exp\left[im\left(\phi \pm r\Omega_{\rm p}/c(r)\right)\right]$
Spiral shape

The form of the spiral:

The spiral shape does not depend on mode number in WKB regime
The opening angle of the spiral indicates the disk thickness (temperature)

Detectablity of Spiral Structures

- Spirals are just the perturbation to the background disk
 - The overall disk structure is not affected
 - Difficult to find "spirals" in SED
- We need good spatial resolution
 - Spirals are "tightly-wound"
 - Need to distinguish spirals from a ring

Need to resolve structure with scale ~H

Spiral Wave Amplitude

- So far, we have only looked at the "shape" of the spiral.
- Another measurable quantity of the wave amplitude
- Spiral amplitude is related to:
 - Angular momentum that is carried by the wave
 - The planet mass if the spiral is excited by a planet

Spiral Wave Excited by a Planet

Typical scale length for the spiral ~H

Planet's gravitational energy ~ perturbation of the thermal energy

$$\frac{GM_{\rm p}}{H} \sim c^2 \frac{\delta \Sigma}{\Sigma}$$

This reduces to:

$$rac{\delta\Sigma}{\Sigma} \sim rac{M_{\rm p}}{M_{*}} \left(rac{r}{H}
ight)^3$$

Protoplanetary Disk @ 100AU

• Surface density (MMSN model)

$$\Sigma_{\rm gas} = 1.7 {\rm g/cm}^2 \left(\frac{r}{100 {\rm AU}}\right)^{-3/2}$$

- Disk thickness (scale height) $H = 15 \text{AU} \left(\frac{r}{100 \text{AU}}\right)^{5/4}$
- Disk aspect ratio

$$\frac{H}{r} = 0.15 \left(\frac{r}{100 \mathrm{AU}}\right)^{1/4}$$

14 AU = 0.1" @ 140 pc → Subaru

Protoplanetary Disk @ 10AU

Surface density (MMSN model)

$$\Sigma = 50 \mathrm{g/cm^2} \left(\frac{r}{10 \mathrm{AU}}\right)^{-3/2}$$

- Disk thickness (scale height) $H = 0.8 \text{AU} \left(\frac{r}{10 \text{AU}}\right)^{5/4}$
- Disk aspect ratio

$$\frac{H}{r} = 0.08 \left(\frac{r}{10 \text{AU}}\right)^{1/4}$$

1.4 AU = 0.01" @ 140 pc
→ TMT, full ALMA

Protoplanetary Disk @ 1AU

Surface density (MMSN model)

$$\Sigma = 1600 \text{g/cm}^2 \left(\frac{r}{1 \text{AU}}\right)^{-3/2}$$

- Disk thickness (scale height) $H = 0.05 \text{AU} \left(\frac{r}{1 \text{AU}}\right)^{5/4}$
- Disk aspect ratio

$$\frac{H}{r} = 0.05 \left(\frac{r}{1\mathrm{AU}}\right)^{1/4}$$

0.1 AU = 0.001" @ 140 pc → ???

Direct Imaging Observations of Protoplanetary Disks

- NIR observations
 - SEEDS project with Subaru
 - A number of high resolution disk observations

Dip C S2

Muto et al. (2012)

EEDS

S

Hashimoto et al. (2010)

Direct Imaging Observations of Protoplanetary Disks

- Sub-mm observations
 - With SMA, ALMA. Mainly with dust continuum
 - Not yet reached to the resolution comparable with NIR (probably in ALMA Cycle 2)

Casassus et al. 2013

Spiral Fitting

Parameter	Search Range	Best Fit External Perturber	_
r _c	$0.05 \le r_{\rm c} \le 1.55$	$r_{\rm c} = 1.55$	
θ	$0 \le \theta_0 \le 2\pi$	$\theta_0 = 1.72 [\text{rad}]^{\text{a}}$	
\mathbf{h}_{c}	$0.05 \leq h_{\rm c} \leq 0.25$	$h_{\rm c}=0.182$	
δ	$-0.1 \le \delta \le 0.6$	$\delta = 0.06$	_

- We can derive:
 - Disk thickness
 (~temperature)
 - Where the "launching point of the spiral" is
 - "Planet location", if it is launched by a planet

-1 -0.5 0 0.5 1

MWC 758 with Subaru, Grady, Muto et al. (2012)

TMT Simulation

-0.4

-0.4 -0.2

Ø

x[asec]

0.2 0.4

1

0.2

-1

-1 -0.5 0

x[asec]

0.5 1 1

TMT

-0.2

-0.2 -0.1

Ø

x[asec]

0.1

Multiband Observation

- NIR scattered light observes upper layer of the disk
- Sub-mm continuum observes disk mid-plane
 Laminar disk if both show similar spiral feature

- Planets are directly imaged at NIR
- Inflow of gas to the planet at sub-mm

Summary Figure

Spiral: good spatial resolution at both NIR and submm