

24-25 Jan., 2013 NAOJ Conf.「将来装置による地球型系外惑星直接検出および撮像」

フォトニック結晶技術による焦点面マスク コロナグラフ装置の開発

Development of Focal-Plane Phase-Mask Coronagraphs Based on Photonic Crystal Technology

> Naoshi Murakami (Hokkaido Univ.)

Collaborators

Jun Nishikawa, Motohide Tamura (NAOJ) Wesley Traub, Dwight Moody, Brian Kern, John Trauger, Eugene Serabyn (JPL) **Dimitri Mawet (ESO)** Olivier Guyon, Frantz Martinache (Subaru/NAOJ) Shoki Hamaguchi, Fumika Oshiyama, Hayato Shoji, Kazuhiko Oka, Naoshi Baba (Hokkaido Univ.) Observatory of Japan

Development of Focal-Plane Phase-Mask Coronagraphs Based on Photonic Crystal Technology

R& D for next-generation coronagraphs

- ➔ Focal-plane phase-mask coronagraphs
- Expecting for both ground-based and space observations
- Direct detection of habitable Earth-like planets
 - ✓ Introduction
 - ✓ Mask Designs
 - ✓ Mask Manufacture
 - ✓ Lab. Tests @NAOJ and Hokkaido Univ.
 - ✓ Lab. Tests @HCIT/JPL
 - ✓ Polarimetric Coronagraph
 - ✓ Towards Ground-based Observations

Introduction:

Direct Detection of Exoplanets

Classical Lyot Coronagraph

Classical Lyot Coronagraph

"Occulting" mask

Lyot stop (diaphragm)

Advanced Coronagraph: Mask Designs and Lyot-stop Images

telescope pupil $\neq 0$ (perfect stellar suppression!)

HOKKAIDO UNIVERSITY

Sky Coverage

Principle of Coronagraph Phase Mask: Pancharatnam-Berry's Phase Modulation

RCP: Right-handed Circular Polarization LCP: Left-handed Circular Polarization

> Photonic-crystal coronagraph masks (Manufactured by Photonic Lattice Inc.)

> Photonic crystal = Periodic nanostructure of high and low refractive indices

9

Fully Achromatic Design: Polarization Filtering

Lab. Test of 80PM and Vortex Coronagraphs: Lyot stop images

8-Octant

2nd-order vortex

Intensity inside telescope $pupil \neq 0$

Lab. Test of 80PM Coronagraph: Final Images

HOKKAIDO UNIVERSITY

Lab. Tests of the 80PM Coronagraph: High Contrast Imaging Testbed (HCIT/JPL)

HCIT (@ Jet Propulsion Laboratory)

 ✓ A state-of-the-art coronagraph simulator in a vacuum chamber

✓ Extreme AO system for suppressing residual speckles

✓ 64x64 Deformable Mirror (DM)

✓ Lab. tests of the 80PM coronagraph have been carried out (Mar 2011)

Coronagraph image with polychromatic *light with 20%-bandpass filter*

λ₀=800nm, Δλ=160nm (BW=20%)

Murakami et al., Proc. SPIE, 8442, 844205 (2012).

Lab. Tests of the 80PM Coronagraph: High Contrast Imaging Testbed (HCIT/JPL)

Summary of Currently Achieved Contrasts

HOKKAIDO UNIVERSITY

Summary of Currently Achieved Contrasts

Lab. Demonstrations of Band-Limited Mask Coronagraph

Manufactured mask

Moody et al., Proc. SPIE, 7010, 70103P (2008)

Trauger & Traub, Nature 446, 771 (2007)

High-Contrast Polarimetry

Polarizations of Planets \rightarrow due to scattering and reflection

Schmid et al., Proc. AIU, 200, 165 (2006). 0.6 0.5 Titan 0.4 polarization 0.3 0.2 Neptune Uranus $\mathbf{E}_{arth}^{\Delta}$ 0.1 Jupiter Mercury Mars Saturn 0.0 Venus -0.10.00 0.05 0.10 0.15 0.20 reflectivity

"Double Difference" Technique → Cancel out unpolarized speckles

Dual-channel polarimetric coronagraph

Experimental results of the double-difference technique using the polarimetric coronagarph

Murakami et al., Proc. SPIE, 8442, 844205 (2012).

Towards Ground-based Observations

Ref) Lozi et al. (2009), PASP, 121, 1232 / Martinache et al. (2009), Proc. SPIE, 7440, 744000

We need clear circular apertures

(1) Off-axis telescope

(2) Subaperture

Ex) The Palomar 200" Telescope: Well Corrected Subaperture (D=1.6m)

Directly imaged HR 8799b-d: A vector vortex coronagraph based on liquid-crystal polymers^{*}ref

Ref) Mawet et al. (2009), Opt. Express, 17, 1902

Serabyn et al. (2007), ApJ, 658, 1386

Serabyn et al. (2010), Nature, 464, 1018

We need clear circular apertures

(3) Beam-shaping lenses or mirrors (our approach)

Preliminary experimental results

Ex) Manufacturing of MPIAA lenses

MPIAA lenses (Low dispersion: CaF₂)

MPIAA = Modified Phase-Induced Amplitude Apodization

□ The photonic-crystal phase masks for coronagraphy
 □ 8-octant phase mask
 □ Continuous optical vortex (second order)
 □ 32-Sector optical vortex (fourth order) → New

- Lab. tests at the HCIT/JPL (with an extreme AO)
 10⁻⁸-level contrast with broadband light (BW=10%)
- Dual-channel polarimetric coronagraph
 10⁻⁸-level contrast by the speckle subtraction and post processing technique (Murakami et al. in prep.)
 Characterization of planets via polarization
- □ Next Milestone
 - **O***n-sky* observations with ground-based telescopes

