Visible Coronagraph and Infrared
Interferometer



Background

 More than 800 planets
have been discovered by
several indirect techniques.
* Kepler detects more than
50 Earth-like candidates.

e Earth-like planets in HZ are
common around nearby stars.
=» To detect and characterize

Earth-like planets
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Future Direct Imaging Programs
Current 20187 2023 ? (after 2025)

I
* SPACE 1.

JWST SPICA
o Cold giants around old
Ground nearby stars TPF
2021 Search for biological activity
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Visible Coronagraph and Infrared

Interferometer
Visible Coronagraph | e Infrared Interferometer
_ Olivier Guyon - Hiroshi Shibai (non-participant)
- Keigo Enya - Hiroshi Matsuo (non-participant)

- Naoshi Murakami
- Takayuki Kotani

Complementary

- Manufacturing
/Measurement
- Mikio Kurita

« Transit
-Norio Narita



Future Direct Imaging Programs
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Visible Coronagraphs



Design for high contrast instruments

High Contrast Instrument
[ Wavefront sensing/correction*Coronagraph }

Boundary condition:
(0. requirement) . Mground or space. @single or segmented telescope

Optimization



Adaptive Optics for atmosphere

e Wavefront is corrugated by atmospheric turbulence.
=» Coronagraph dose not work!
* AO corrects wavefront and produce diffracted light.
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Conceptual diagram of AO

without AO with AO36
(AO36 First light press release)



What’s the limitation on the contrast?

Planet light
 Coronagraph tackles only diffracted light. Photon counts
=>» “Speckle noise”, background, and planet /
light are falling on the detector plane. 7N
C e . : fi
* Contrastis limited by speckle noise, which L IfL
comes from incomplete optical system and feky

chromatism. (Background is not contributed
to planet detection.)

Detector Plane

Coronagraph
Speckle noise

Adaptive optics

Diffracted image Stellar halo suppressed



What’s the limitation on the contrast?
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What’s the limitation on the contrast?

* Contrast is improved through suppression
of speckle noise by wavefront correction/
sensing.

=» Measurement accuracy of wavefront
sensing/correction.

Planet light

thoton counts
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What’s the limitation on the contrast?

 Wavefront measurement : to determine both “amp” and
Ilphasell

* Accuracy is ultimately limited by uncertainty relation.
=>» Photon noise limit

~+ V

Re
Phasor diagram of complex amplitude



How much contrast we need?

Assumption:
Habitable planets around nearby stars

* Requirement:
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High performance instrument

1. High contrast at small 10-7 4

angular separation
2. Effective for broad-band light 10-8 ¢
3. High throughput @
4. Effective for any pupil geometry § 1097 ?(’\

o
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Angular separation[arcsec]
Kawahara+ (2012)



Several solutions proposed!
Please see Guyon, Enya, Murakami,
and Kotani-san’s talks.



Infrared Interferometer



Motivation

Various absorption lines formed by species such as H20, CO2, 03,
CH4, NH3, and N20O in the mid-infrared.

e Science goal: Search for a0 — , , .
- ) : . — —
indicators of biological activity. [ ~

* Difficult to explain presence of
03, CH4, NH3, and N20 in
habitable planets without
biological process

 Simultaneous detections of O3
(9.6um), CH4(7.4um), and NH3 =

03 s Farth
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ntensity (photons um-1m-2 hr-1)

(9-11um) bands in a habitable ol N s
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planet indicate biological Wavelength (um)

activity. The mid-IR spectra of the Earth, Venus,

and Mars (Cockell et al. 2009)



Very hard to detect an analog Earth

* A target system composed of host star, Exo Zodi, Local Zodi, an analog Earth.
e Star/planet ~ 10/7(7) at 10um.
 Ananalog Earth embedded in exo zodi and local zodi.

(even if a star perfectly removed)

1.E+06 Assuming that
1.E+05 Stellar Leak Local Zodi * Distance: 10pc
_ * A Sun-like star with Ts=5784K and 1Lsun
1.E+04 Exo Zodi e An Earth-diameter B.B. with Te=265K.
*Solar [system ) .
1 E403 e LZ and EZ estimated based on Reach et al. 1995.

Null depth: 10> at 10um

03 Earth co2 _ _ _ _

1.E+02 CHa Dual Bracewell configuration with phase chopping
HZ;/\/—\’/\ and a spectrometer
1.E+01 e 4 *2m collectors.

1.E+00 - e Beam efficiency: 10%
0.0005 0.001 0.0015 0.002 These noises included in our simulation.
Wavelength (cm) (These noise levels are approximately

Photoelectrons
[ ]

The signals of the photoelectron for a spectral resolt&fBf to the previous studies.)
R=100 in one-hour integration time



TP F_ I/Da rWi n Destructive output

P. R. Larson, C. Beichman, W.C. Danchi, et al.
* Configuration:

/2 chopping

- Dual Bracewell configuration,

%

composed of two single nulling ® 5
interferometers. S

. O =

- Phase chopping and a spectrometer ,
with R=3 (detection) and R=20 < Constructive °”tp“t>
(spectroscopy) Imaging axis

. |maging method: 4 telescope X-Array chopped

- Maximum correlation method with
rotation of the arrays

- A modulated signal by a planet asit
moves in and out of the ’

interferometer fringe pattern.

e Problem:

15 200 250
8 (degreas

- incompleteness of Co-phasing Transmission pattern TPF signalgs“é’s a function

during rotation of the array (destructive output) of rotation angle ,,
Cockell et al. 2009 Beichman & Velusamy 1995

™0



New method for direct detection of

exoplanets

Matsuo et al. 2011

ﬂrevious method

Star planet
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Image of a

Model of a target system
EZ, LZ included.

planetary system AT
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Spectrum of an analog Earth

* The spectrum of the analog Earth successfully obtained

e 35 days required for spectrum of an analog Earth with
R=100 around a Sun-like star (G2V) at 10pc.

(45 days required with R=20 in previous study)
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Far-infrared Interferometer Telescope
Experiment (FITE)

- Precursor to space infrared interferometer
- First flying interferometer



Spatial Resolution (arcsec)

Motivation

~ (Present condition)

“1VSOP2 11 We developed FITE as the first attempt of an
I
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104 A spatial resolution of 1 arcsecond at a
wavelength of 100 mm with the maximum

baseline of 20 m.

Compared to other wavelengths, the spatial
==1 resolution is insufficient in the FIR.

= atmospheric transmissivity
— satellite, rocket, or balloon

Maximum Base line is 20 m
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FITE Optical Design

Interferometer Optics / :

|

Parabola

Sensor Optics




Telescope Side Hanging Train

Wide-Field Camera

Telescope .-
Structure < O
U ‘ Control
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Primary
Mirrors

Cryostat

Interferometer
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First Trial - Decemberin 2008 ,in B‘razil

inflation tube

~50m

209.1m

crane

BJ300-1 CONSTRUCTION

Exhaust Valve

Collar Position 31.5m

We 1ght Table (Launching)

Balloon 857.5 kglinclude Valve)
Parachute 227.5 kg (include A. fnﬂéﬂ)
Flasher 0.35kg '

Ballast 450 kg

Transponder 4.46kg

FITEGondola 1640 kg

Gross Weight  3179.81kg
Free Lift( 14%) 445 kg

Gross Lift 3624.81 pg
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Our future plan toward TMT

Background:
Japanese AO for high contrast imaging are 5 years

behind Europe and America ...

=>» We need to catch up with them until TMT.



New 4m-class Telescope

See Kurita-san’s talk

* 4m-class telescope is building in Japan
 Segmented telescope
=» One of the precursors to TMT

* Lots of telescope time opens our
original science.

= ? % of the telescope time is assigned
to high contrast tests and observations.

Image of 4m-class telescope



Is site suitable for AQO?

 Seeing ~ 1.1 arcsec (norm)

=>» D/r, of Subaru and Kyoto are
almost same.

* Window speed is ~ 30m/s

=» Frame rate of correction is ™
1kHz

The site is suitable for AO
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Adaptive optics for kyoto telescope
e Starting from April 2012
* Purpose:
- To characterize planets, which will be discovered by GAIA etc.
- To test for future high contrast programs
- To educate young people for future direct imaging programs
* System: Visible high contrast imager

- Sensor: Tip/Tilt (PSD) + SH + (upgraded) 4bin-interferometer
- Correction: Fast Steering (~¥1kHz)+DM88 (~*500Hz)+DM1.6k (~1.5kHz)

Tip/Tilt DM38 N Goal: SR~0.9 in H
- : X \ Y, ), H
65#-750nm ‘ 750-9o<£:1m To coronagraph
Telescope light ' Tip/Tilt, SH 4-bin interferometer

Woofer Tweeter



Current Testbed
Source: Halogen lump

Atmospheric phase generator. | (400-2200nm)
DM88 (Alpao)  Fast Tip/Tilt (PI) Spatial filter

| | :source part

: AO part

Infrared Imaging
camera

Wavefront camera
Zyla (not completed)



