

Next Generation Huge Telescopes

Grand based •TMT: D=30m (USA, Canada, Japan, ...) •E-ELT: D~ 40m (EU, ...)

Space •TPF: D~10 m or D~ 4m×N: Interferometer (NASA, CALTEC, ESA, ...) •SPICA, JTPF: D~ 4m (Japan, ...)

Earth Shine Spectrum

N.J. Woolf and P.S. Smith, Hervard-Smithsonian Center for Astrophysics

Reflection Spectra of Plants

Direct Vision Prism

Jupiter & Saturn

Subaru Telescope, National Astronomical Observatory of Japan

CAC (B, V, & R) January 28, 1999

Spectroscopy with Wide Wavelength Diffraction grating

- Linear dispersion for wavelength.
- Decrease of diffraction efficiency without blazed wavelength.
- Overlap of higher diffraction orders.

Prism

- Wide wavelength coverage with high efficiency.
- Non-linear dispersion for wavelength and wave number.
- Small dispersion.

Fourier transform spectrograph

- Wide wavelength coverage.
- Linear dispersion for wave number.
- Vanishment of multiplex advantage for continuum.
- Loss of optical throughput advantage for point sauce.

Direct Vision Prism

- 10m telescope@0.5 μm : 0.0126"
- \rightarrow Slit width : 1/40 (vs. Seeing: 0.5")
- → Resolving power :× 40
- * **Required small wave front error:** < $\lambda/20$

Dispersion of Refractive Index Refractive index $n(\lambda)$ of a dielectric is given by $n(\lambda)=A_0+A_1\lambda^2+A_2\lambda^{-2}+A_3\lambda^{-4}+A_4\lambda^{-6}+A_5\lambda^{-8}\dots, (1)$ where λ is wavelength. $n(\lambda)$ is practically obtained by $n(\lambda) = A_0+A_2\lambda^{-2}+A_3\lambda^{-4}$. (2)

A linear angular dispersion with wavelength is obtained by combination of prisms with different A₂ and A₃ ratios.

Thickness of a prism block is reduced by using a resin, since some resin has small absolute value of A₂/A₃, compared with a glass or crystal.

Refractive Indices of Optical Glasses and Resin

Marker: Polycarbonate (PC) : Measured, S-TIM39 and S-FSL5: Sellmeier's dispersion formula.

Linear Angular Dispersion Prism

Birefringence prism

Orion Nebula CISCO (J, K' & H2 (v=1-0 S(1)) Subaru Telescope, National Astronomical Observatory of Japan January 28, 1999

Star-forming Region S106 IRS4

Subaru Telescope, National Astronomical Observatory of Japan Febr Copyright© 2001 National Astronomical Observatory of Japan, all rights reserved

Applications of Wollaston Prisms

Polarization Spectroscopy

- Angular dispersion is small against a separation angle.
- →Combined with another disperser.

Polarization Imaging

- Angular dispersion should be small.
- α-BBO (BaB2O4) has small angular dispersion, but it is difficult to obtain a large crystal.

Wollaston Prisms of LiNbO3, YVO4 and TiO2

Immersion Grating

IC 434 (Horse-head Nebula)

Ultra-high-sensitivity HDTV I.I. color camera (NHK) Exp. 22 sec. (11 frames coadded) January 16, 1999

Subaru Telescope, National Astronomical Observatory of Japan Copyright © 1999, National Astronomical Observatory of Japan, all rights reserved

Introduction: 10 µm Wavelength Region

Interstellar Chemistry in Dense Cloud

Laboratory IR Spectroscopy of c-C₃H₃⁺, CH₃⁺

No gas phase data for $c-C_3H_3^+$

Spectrograph of 30m Telescope (R~ 50,000@1µm)

	Natural seeing: 0.5"	Diffraction limit: 0.0084"	Remarks
D col = Optical pass difference	3 m	0.05 m	~ 900 g/mm grating (α=26.6°)
Collimator f	30 m	0.50 m	F/10
Size of optics	35 × 10 × 4.5 [m]	0.6 × 0.2 × 0.075 [m]	Conventional spectrograph
Slit width	727μm	1 2.2 μm	F/10
Camera F	F/0.62	F/37	15μm × 3 pix.
Precision of optical elements	~ 3λ (P-V), ~ 0.5λ (rms)	< λ/20 (P-V), < λ/100 (rms)	

LiNbO₃ (n = 2.3) grating, 30 g/mm, Dicing Saw LiNbO₃ (n = 2.3) Grism, 444 g/mm, Ion etching

(Ebizuka et. al. SPIE, **3355**, 1998)

Ge (n=4.0) grating, Excimer Laser Ablation

Ge Immersion Grating for GIGMICS

①Trui

Nano-precision machine and ELID grinding method. $30 \times 30 \times 72$ [mm], $\alpha = 68.75^{\circ}$, $\Lambda = 600 \mu m$

First Light Observation of GIGMICS

KANATA 1.5m telescope, Higashi-Hiroshima Observatory, Space Science Center Hiroshima Univ., Dec. 2010~Apr. 2011.

Targets: Vib.-rot. Transitions of Methane, Ethane, Ammonia, N_2O , O_3 , SO_2 , H_2O , CO_2 , SO_2 , H_2S , NOx, Halogen Oxides, etc., in the Planets, Stellar Atmosphere, bright SFRs, CSE of late type stars, and the upper atmosphere of the Earth.

Reference: Earth's atmosphere

 $FSR = 0.0223 \,\mu$ m

First Scientific Result (1): Venus

Diffraction Order for the Ge Immersion Grating

Absorption lines cannot be identified to the "telluric lines". \rightarrow CO₂ hot-band & isotopes from Venus.

First Scientific results (2): NGC7027

emission line toward the planetary nebula.

Trial Fabrications of Ge Immersion Grating for R~200,000

R∽200,000@10µm → Size: 120 x 120 x 270 mm → Fabrication time: several 1,000 hours

Novel Immersion Grating

- Machining of dicing saw makes smooth surface
- Easy tooling.
- Fabrication time for grating with 120 x 120 x 270 mm →Several 100 hours?

(Ebizuka et. al. SPIE, **6273**, 2006)

Scattering Loss of Immersion Gratings

Scattering loss: Ls is given by, Ls = 1-exp { -($4\pi n \sigma \cos \theta / \lambda$)²},

where σ is surface roughness in rms.

a

Ĥ

n

n = 4.0, σ = 0.05μm, λ = 10μm				
θ [deg.]	Ls[%]	θ [deg.]	Ls[%]	
0	6.12	45	3.11	
15	5.72	60	1.57	
30	4.62	75	0.42	

Ordinary immersion grating ($\theta = 0$) 6.12 % Ls =Novel immersion grating ($\alpha = 60, \theta = 60$) Ls = $\{1 - (1 - 0.0157)^2\} \times 100 =$ 3.12 %

Fabrication Method of Novel Immersion Grating for Visible and Near IR

Conclusions

- Direct vision prism with glasses and plastic realizes linear dispersion for wavelength or wave number, or constant resolving power.
- Wollaston Prism is able to observe wide wavelength with linear dispersion.
- Novel immersion grating achieves small scattering loss and reduces fabrication cost.